Sains Malaysiana 53(12)(2024): 3339-3348

http://doi.org/10.17576/jsm-2024-5312-17

 

Development of TCS3200 Color Sensor based on Arduino Uno Microcontroller for Determination of Capsaicin Level in Sauces

(Pembangunan Penderia Warna TCS3200 berdasarkan Mikropengawal Arduino Uno untuk Penentuan Tahap Kapsaisin dalam Sos)

 

KHAIRI SUHUD1,*, DIAN UTARI1, MUHAMMAD SYUKRI SURBAKTI2, SAGIR ALVA3, FAIRUZ OMAR4 SAIFUL SAIFUL1, LENY HELIAWATI5, PURNAMA NINGSIH6, ANDRIY ANTA KACARIBU7, MUHAMMAD DAFFA HADISTYA1, THARIQ ZAID GUNANA1 & RINALDI IDROES8

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
2Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
3Department of Mechanical Engineering, Faculty of Engineering, Mercubuana University, Jakarta 11650, Indonesia
4School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
5Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pakuan-Bogor, Indonesia
6Program Studi Pendidikan Kimia, Jurusan Pendidikan MIPA, FKIP Universitas Tadulako Sulawesi Tengah, Indonesia
7Doctoral Program of Agricultural Science, Postgraduate School Program, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
8Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

 

Received: 5 August 2024/Accepted: 14 October 2024

 

Abstract

A color sensor has been designed to measure the capsaicin level in commercial sauces. This system is designed using a TCS2300 color sensor as an input, and an Arduino Uno microcontroller with Integrated Development Environment (IDE) software as signal conditioning and signal processing. The measurement result will be compared to the standard Ultraviolet-Visible (UV-Vis) spectrophotometer method. The sauce samples were taken using a sampling technique, namely eight samples of sauces circulating in the city of Banda Aceh. The result showed that the levels of capsaicin using the TCS3200 color sensor and UV-Vis spectrophotometer ranged from 5.39 to 22.42 mg/L and 5.58 to 22.64 mg/L, respectively. The linearity obtained in the concentration range of 5.25 mg/L shows a linear calibration curve using the TCS3200 color sensor (R2 = 0.9961) and UV-Vis Spectrophotometer (R2 = 0.9973). Accuracy (% recovery) for the TCS3200 color sensor and UV-Vis spectrophotometer ranged from 98.94 to 106.63%, and 98.13 to 110.2% mg/L, respectively. In the case of interday and intraday relative standard deviation has not more than 2%. Based on the t-test assessment, it shows that the TCS3200 color sensor has no differences statistically in results with UV-Vis Spectrophotometer. These results describe that the TCS3200 color sensor can be an alternative for analyses of capsaicin in sauce samples.

 

Keywords: Arduino Uno; capsaicin; IDE software; sauce; TCS3200 color sensor; UV-Vis spectrophotometer

 

Abstrak

Satu penderia warna telah dibangunkan untuk mengukur kandungan kapsaisin dalam sos komersial. Sistem ini direka menggunakan penderia warna TCS2300 sebagai input, dan Arduino Uno mikropengawal dengan perisian Persekitaran Pembangunan Bersepadu (IDE) sebagai isyarat kawalan dan pemprosesan. Keputusan pengukuran  dibandingkan dengan kaedah piawai spektrofotometer Ultraviolet-Visible (UV-Vis). Sampel dikumpulkan dengan menggunakan teknik pensampelan yang melibatkan lapan sampel sos dari Banda Aceh-Indonesia. Kepekatan kapsaisin yang diukur menggunakan penderia warna TCS3200 dan spektrofotometer UV-Vis masing-masing dalam julat berjulat dinamik dari 5.39 hingga 22.42 mg/L dan 5.58 hingga 22.64 mg/L. Kelinearan diperoleh dalam julat kepekatan 5.25 mg/L, menunjukkan hubungan linear yang bagi kedua-duanya, penderia warna TCS3200 (R2=0.9961) dan Spektrofotometer UV-Vis (R2=0.9973). Ketepatan dinyatakan sebagai % hasil berada antara 98.94 hingga 106.63% untuk penderia warna TCS3200 dan 98.13 hingga 110.2% mg/L untuk UV-Vis. Kedua-dua sisihan piawai relatif antara hari dan intrahari adalah di bawah 2%. Analisis ujian-t mengesahkan bahawa tiada perbezaan statistik yang signifikan antara kedua-dua kaedah tersebut. Keputusan ini menunjukkan bahawa penderia warna TCS3200 mampu menjadi kaedah alternatif yang berdaya maju untuk menganalisis kapsaisin dalam sampel sos.

 

Kata kunci: Arduino Uno; kapsaisin; penderia warna TCS3200; spektrofotometer UV-Vis;  sos

 

REFERENCES

Armbruster, D.A. & Pry, T. 2008. Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews 29(Suppl 1): S49-52.

Barbero, G.F., Palma, M. & Barroso, C.G. 2006. Determination of capsaicinoids in peppers by microwave-assisted extraction–high-performance liquid chromatography with fluorescence detection. Analytica Chimica Acta 578(2): 227-233.

Bhagat, R. & Saudagar, R.B. 2019. A review on analytical method development and validation. Journal of Drug Delivery and Therapeutics 9(3): 1064-1067.

Borkar, H., Rambhad, M., Paunikar, K., Karanjikar, A. & Gawai, J.S. 2019. A review on Arduino based color sorting machine. International Journal for Research in Applied Science & Engineering Technology 10(II): 43-45.

Chapa-Oliver, A.M. & Mejía-Teniente, L. 2016. Capsaicin: From plants to a cancer- suppressing agent. Molecules 21(8): 931.

Chicco, D., Warrens, M.J. & Jurman, G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7: 623.

Chung, M-K. & Campbell, J.N. 2016. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals 9(4): 66.

Dewantara, K.S. & Yulkifli. 2020. Use of TCS3200 sensor to identify heavy metal materials. Pillar of Physics 13(2): 163-170.

Elechi, J.O.G. & Sule, J.I. 2023. Influence of traditional food processing systems on food safety, chemical compositions, and functional properties of pumpkin (Cucurbita pepo L) seed flour. Journal of Nutrition and Food Security 8(2): 246-256.

Farwah, S., Hussain, K., Rizvi, S., Hussain, S.M., Rashid, M. & Saleem, S. 2020. Genetic variability, heritability and genetic advance studies in chili (Capsicum annuum L.) genotypes. International Journal of Chemical Studies 8(3): 1328-1331.

Friedman, J.R., Nolan, N.A., Brown, K.C., Miles, S.L., Akers, A.T., Colclough, K.W., Seidler, J.M., Rimoldi, J.M., Valentovic, M.A. & Dasgupta, P. 2018. Anticancer activity of natural and synthetic capsaicin analogs. Journal of Pharmacology and Experimental Therapeutics 364(3): 462-473.

Ismail, R., Lee, H.Y., Mahyudin, N.A. & Abu Bakar, F. 2014. Linearity study on detection and quantification limits for the determination of avermectins using linear regression. Journal of Food and Drug Analysis 22(4): 407-412.

Juliano, A., Hendrawan, A.H. & Ritzkal, R. 2020. Information system prototyping of strawberry maturity stages using Arduino uno and TCS3200. Journal of Robotics and Control 1(3): 86-91.

Lafz, S. & Amini, Z. 2023. Food security of the elderly during COVID-19 pandemic. Journal of Nutrition and Food Security 8(3): 376-382.

Lu, Y. & Cui, B. 2019. Extraction and purification of capsaicin from capsicum oleoresin using a combination of tunable aqueous polymer-phase impregnated resin (TAPPIR) extraction and chromatography technology. Molecules 24(21): 3956.

Maslukhah, Y., Faridah, D. & Lioe, H. 2019. Validation of analytical method for quantification of egg cholesterol using reversed phase-high performance liquid chromatography-multiwavelength detector. Tropical Animal Science Journal 42(3): 230-236.

Maula, N.M., Muhaimin, M. & Millasari, M. 2020. Determination of pungency level and capsaicin concentration in sauce using UV-visible spectrophotometry. AIP Conference Proceedings. 2229: 030015.

Mayerhöfer, T.G., Pipa, A.V. & Popp, J. 2019. Beer’s law‐why integrated absorbance depends linearly on concentration. ChemPhysChem. 20(21): 2748-2753.

Merritt, J.C., Richbart, S.D., Moles, E.G., Cox, A.J., Brown, K.C., Miles, S.L., Finch, P.T., Hess, J.A., Tirona, M.T., Valentovic, M.A. & Dasgupta, P. 2022. Anti-cancer activity of sustained release capsaicin formulations. Pharmacology & Therapeutics 238: 108177.

Pacheco, M.A.L., Rojas, J.J.B., Castro-Ramos, J., Manríquez, J.F.V. & Esmonde-White, K. 2021. Optical study to identify and quantify capsaicin in optical window. Heliyon 7(3): e05797.

Passos, M.L. & Saraiva, M.L.M. 2019. Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement 135: 896-904.

Prabowo, S., Sutrisno, C.K.U., Candra, K.P., Rahmadi, A. & Yuliani, Y. 2023. Colorimeter design for dry food-products inspection using tcs3200 sensor and Arduino mega-2560. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering 6(2): 134-141.

Prayitno, A.H., Meswari, R. & Diauddin, M. 2020. The study of chemical contents, daily values, and microbiology of chicken chili sauce. Canrea Journal: Food Technology, Nutritions, and Culinary Journal 3(1): 49-56.

Rezazadeh, A., Hamishehkar, H., Ehsani, A., Ghasempour, Z. & Kia, E.M. 2023.  Applications of capsaicin in food industry: Functionality, utilization and stabilization. Critical Reviews in Food Science and Nutrition 63(19): 4009-4025.

Rohaeti, E., Muzayanah, K., Septaningsih, D.A. & Rafi, M. 2019. Fast analytical method for authentication of chili powder from synthetic dyes using UV-vis spectroscopy in combination with chemometrics. Indonesian Journal of Chemistry 19(3): 668-674.

Sahid, Z.D., Syukur, M. & Maharijaya, A. 2020. Diversity of capsaicin content, quantitative, and yield components in chili (Capsicum annuum) genotypes and their F1 hybrid. Biodiversitas Journal of Biological Diversity 21(5): 2251-2257.

Siregar, I.M., Siagian, N.F. & Siregar, V.M.M. 2022. A design of an electric light control device using Arduino uno microcontroller-based short message service. Internet of Things and Artificial Intelligence Journal 2(2): 98-110.

Soleh, A., Saisahas, K., Promsuwan, K., Thavarungkul, P., Kanatharana, P. & Limbut, W. 2020. N-doped graphene nanoplatelets for direct capsaicin detection in chili pepper samples. ACS Applied Nano Materials 3(10): 10094-10104.

Surbakti, M.S., Farhan, M., Zakaria, Muhammad Isa, Sufriadi, E., Alva, S., Yusibani, E., Heliawati, L., Iqhrammullah, M. & Suhud, K. 2022. Development of Arduino uno-based TCS3200 color sensor and its application on the determination of rhodamine B level in syrup. Indonesian Journal of Chemistry 22(3): 630-640.

Thangabalan, B., Kahsay, G. & Eticha, T. 2018. Development and validation of a high-performance liquid chromatographic method for the determination of cinitapride in human plasma. Journal of Analytical Methods in Chemistry 2018: 8280762.

Tobolka, A., Škorpilová, T., Dvořáková, Z., Cusimamani, E.F. & Rajchl, A. 2021. Determination of capsaicin in hot peppers (Capsicum spp.) by direct analysis in real time (DART) method. Journal of Food Composition and Analysis 103: 104074.

Wang, M., Gao, B., Xing, Y. & Xiong, X. 2020. Preparation of an electrochemical sensor based on multi-walled carbon nanotubes/molecularly imprinted polymers for the detection of capsaicin in gutter oil by differential pulse voltammetry. International Journal of Electrochemical Science 15(9): 8437-8449.

Wang, X., Wang, K. & Liang, R. 2024. Environmentally friendly anti-biofouling polymeric membrane potentiometric sensors based on imprinted receptors. International Journal of Electrochemical Science 19(5): 100564.

Yudhana, A., Septiyani, R., Mufandi, I., Rosyady, P.A., Husein, M.F. & Abdullatif, L.I.M. 2022. A portable device based on an electrical conductivity sensor for the detection of monosodium glutamate (MSG) in soupy foods. Instrumentation Mesure Metrologie 21(3): 119-126.

Zhang, S., Wang, D., Huang, J., Hu, Y. & Xu, Y. 2020. Application of capsaicin as a potential new therapeutic drug in human cancers. Journal of Clinical Pharmacy and Therapeutics 45(1): 16-28.

 

*Corresponding author; email: khairi@usk.ac.id

 

 

 

 

 

 

 

 

previous next